सभी $\alpha \in R$ के समुच्चय, जिसके लिए $w=\frac{1+(1-8 \alpha) z}{1-z}$ सभी $z \in C$ के लिए, जो कि $|z|=1$ तथा $R e\, z \neq 1$ को संतुष्ट करते हैं, मात्र एक काल्पनिक संख्या है, है

  • [JEE MAIN 2018]
  • A

    $\left\{ 0 \right\}$

  • B

    an empty set

  • C

    $\left\{ {0,\frac{1}{4}, - \frac{1}{4}} \right\}$

  • D

    equal to $R$

Similar Questions

माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा

यदि $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ तो $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=

यदि  $|z|\, = 1,(z \ne  - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=

यदि $z_1$ व $z_2$ कोईभी सम्मिश्र संख्याएँ हैं, तब $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ बराबर है

यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा